Mathematik * Klasse 10 d

Aufgaben unterschiedlicher Schwierigkeit zu Kreisfläche und Kreisumfang

Bestimmen Sie jeweils zu den rot umrandeten Figuren den Umfang U in Vielfachen von a und die Flächeninhalte in Vielfachen von a^2 .

Die Figuren sind in Quadrate oder gleichseitige Dreiecke mit der Kantenlänge a einbeschrieben.

Drei einfache Aufgaben

2. a/2 a/2

3. a/2 a/2 a/2 a/2 a/2

Drei etwas umfangreichere Aufgaben

Beachte: Die Diagonale im Quadrat der Kantenlänge a hat die Länge $d = \sqrt{2} a$.

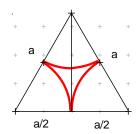
4. a

5. a

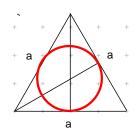
6. a/2 a/2

Beachte: Die Höhe im gleichseitigen Dreieck der Kantenlänge a hat die Länge $h = \frac{\sqrt{3}}{2}$ a

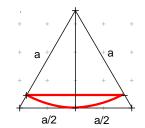
7.



8.



9.



Die letzte Aufgabe zum Knobeln! (Schwer!)

Mathematik * Klasse 10 d

Aufgaben unterschiedlicher Schwierigkeit zu Kreisfläche und Kreisumfang * Lösungen

1.
$$r_1 = a$$
; $r_2 = \frac{a}{2}$; $U = (1 + \pi) \cdot a \approx 4,1a$; $F = \frac{\pi}{8}a^2 \approx 0,39a^2$

2.
$$r_1 = a$$
; $r_2 = \frac{a}{2}$; $r_3 = \frac{a}{4}$; $U = \frac{5\pi}{4} \cdot a \approx 3.9a$; $F = \frac{\pi - 1}{4} \cdot a^2 \approx 0.54a^2$

3.
$$r_1 = \frac{a}{2}$$
; $U = \pi \cdot a \approx 3.1a$; $F = \frac{1}{2}a^2 = 0.50a^2$

$$4. \qquad r_1 = a \ ; \ r_2 = \frac{\sqrt{2}}{2} \ a \ ; \ r_3 = \frac{r_1 - r_2}{2} \ ; \quad U = \left(\frac{3}{2} - \frac{\sqrt{2}}{4}\right) \cdot \pi \cdot a \approx 3, 6a \ ; \quad F = \frac{\sqrt{2} - 1}{4} \cdot \pi \cdot a^2 \approx 0,33a^2$$

5.
$$r_1 = \frac{a}{2}$$
; $r_2 = \frac{\sqrt{2}}{4} \cdot a$; $U = \frac{3 + \sqrt{2}}{4} \cdot \pi \cdot a \approx 3,5 a$; $F = \frac{\pi + 1}{8} \cdot a^2 \approx 0,52 a^2$

6.
$$r_1 = \frac{a}{2}$$
; $r_2 = (\sqrt{2} - \frac{1}{2}) \cdot a$; $x = a - r_2 = (\frac{3}{2} - \sqrt{2}) \cdot a$;

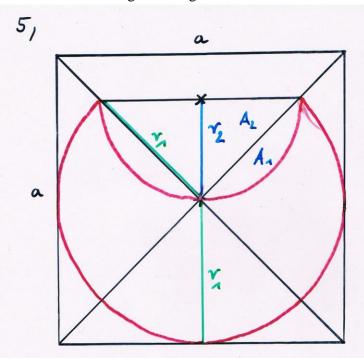
$$U = (\frac{\sqrt{2}\pi}{2} + 4 - 2\sqrt{2}) \cdot a \approx 3,4a$$
; $F = (1 + \frac{\sqrt{2}\pi}{4} - \frac{5\pi}{8}) \cdot a^2 \approx 0,15a^2$

7.
$$r_1 = \frac{a}{2}$$
; $U = \frac{\pi}{2} \cdot a \approx 1,6a$; $F = (\frac{\sqrt{3}}{4} - \frac{\pi}{8}) \cdot a^2 = 0,040 a^2$

8.
$$r_1 = \frac{1}{3} \cdot h = \frac{\sqrt{3}}{6} \cdot a$$
; $U = \frac{\sqrt{3} \pi}{3} \cdot a \approx 1.8a$; $F = \frac{\pi}{12} \cdot a^2 = 0.26a^2$

9.
$$r_1 = h = \frac{\sqrt{3}}{2} \cdot a$$
; $U = (\frac{\sqrt{3}\pi}{6} + \frac{\sqrt{3}}{2}) \cdot a \approx 1.8a$; $F = (\frac{\pi}{8} - \frac{3\sqrt{3}}{16}) \cdot a^2 = 0.07 a^2$

Hinweis: Das kleinere gleichseitige Dreieck entsteht aus dem großen durch zentrische Streckung mit dem Streckfaktor k = h: $a = \frac{\sqrt{3}}{2}$



$$Y_{x} = \frac{1}{\sqrt{2}} a$$
 $Y_{x} = \sqrt{2} \cdot Y_{z} = 3$
 $Y_{z} = \frac{1}{\sqrt{2}} Y_{z} = \frac{1}{\sqrt{2}} \cdot \frac{1}{2} a = \frac{\sqrt{2}}{4} a$
 $U = \frac{3}{4} \cdot 2\pi Y_{z} + \frac{1}{2} 2\pi Y_{z}$
 $U = \frac{3}{4} \cdot 2\pi \cdot \frac{a}{2} + \pi \cdot \frac{\sqrt{2}}{4} a$
 $U = \frac{3}{4} \pi a + \frac{\sqrt{2}}{4} \pi a$
 $U = \frac{3}{4} \pi a + \frac{\sqrt{2}}{4} \pi a$