Physik * Jahrgangsstufe 9 * Aufgaben zur radioaktiven Belastung durch Tschernobyl

1. Durch den Reaktorunfall in Tschernobyl (26. April 1986) gelangte radioaktives Iod 131 in die Atmosphäre.

Die Aktivität des insgesamt freigesetzten Iods betrug etwa $1,76 \cdot 10^{18}$ Bq. Iod 131 hat eine Halbwertszeit von 8,02 Tagen und ein Gramm reines Iod 131 besitzt die Aktivität $4,6 \cdot 10^{15}$ Bq.

- a) Welche Masse radioaktives Iod 131 wurde insgesamt freigesetzt? Welche Flächenaktivität A_F (d.h. Anzahl der Zerfälle pro Quadratmeter und pro Sekunde) hätte sich für die Erdoberfläche ergeben, wenn sich das Iod völlig gleichmäßig über die gesamte Erde verteilt hätte? (Erdradius 6370km, Kugeloberfläche $4 \cdot r^2 \cdot \pi$).
- b) Wie viel Gramm Iod 131 wurden auf der Fläche der alten Bundesländer (3,55 ∃10⁵ km²) abgelagert, wenn hier die durchschnittliche Flächenaktivität etwa 10 kBq/m² betrug? (Die damalige DDR veröffentlichte keine Messwerte.)
- c) Wie viel Gramm Iod 131 waren Mitte Juni 1986 nach 40 Tagen noch vorhanden?
- 2. Beim Reaktorunfall von Tschernobyl wurde auch das radioaktive Cs 137 freigesetzt, und zwar mit einer gesamten Aktivität von etwa 85 ·10¹⁵ Bq.

Cs 137 hat eine Halbwertszeit von 30,2 Jahren und 1 Gramm reines Cs 137 besitzt die Aktivität $3,2\cdot10^{12}$ Bq.

In den am stärksten belasteten Gebieten Deutschlands, im Südosten von Bayern, lag die Bodenkontamination bei bis zu 74 kBq/m².

- a) Welche Menge an Cs 137 wurde insgesamt freigesetzt?
 Welche Menge an Cs 137 wurde auf einem km² in den am stärksten betroffenen Gebieten Deutschlands abgelagert?
- b) Wie viel Prozent des radioaktiven Cs 137 von Tschernobyl sind bis heute schon zerfallen?
- 3. Cs 137 in der Nahrung

In einem relativ hoch belasteten Gebiet des Bayerischen Waldes wurde in den Jahren 2000 bis 2004 bei Wildschweinen eine Cs-137-Aktivität von durchschnittlich 8,0 kBq/kg festgestellt.

- a) Welche Aktivität nimmt ein Mensch auf, wenn er 200g Wildschweinfleisch isst?
- b) Wie viel Gramm Cs 137 enthalten 200g dieses Fleisches? (Siehe Angaben in Aufgabe 2!)
- c) Welcher zusätzlichen effektiven Strahlendosis E ist ein Erwachsener ausgesetzt, wenn er 200g dieses Wildschweinfleisches isst und der Dosisfaktor $g = 1,3 \cdot 10^{-5} \, \text{mSv/Bq}$ beträgt? Wie viel Prozent der mittleren natürlichen effektiven Strahlendosis von 2,4 mSv/a würde das entsprechen?

Hinweis: Die effektive Strahlendosis ist die Summe der Organdosen, jeweils multipliziert mit den zugehörigen Gewebegewichtsfaktoren.

Lösungen

- 1. a) Etwa 0,38 kg Iod 131 wurden insgesamt freigesetzt.
 - Ca. 3.5 kBq/m^2
 - b) Nur etwa 0,8 g
 - c) Nach 40 Tagen sind noch etwa 3% der Ausgangsmenge vorhanden.
- 2. a) Etwa 27 kg Cs 137 insgesamt und etwa 23 Milligramm pro km^2
 - b) Im Juli 2013 sind erst etwa 46 % des Cs 137 zerfallen.
- 3. a) 1,6 kBq
 - b) 5 ·10⁻¹⁰ g
 - c) $0.021~\mathrm{mSv}$ und das entspricht immerhin etwa 0.9% der mittleren natürlichen effektiven Strahlendosis pro Jahr.