

Physik * Jahrgangsstufe 9 * Transformator

Schaltbild für Trafo mit geschlossenem Eisenkern

Unbelasteter Transformator (d.h. Schalter S offen)

Der elektr. Wechselstrom I_P im Primärkreis erzeugt ein

Wegen des geschlossenen Eisenkerns durchdringt dieses … uch die Spule des Sekundärkreises und … dort die Spannung $\,U_S\,$. Man sagt:

Durch das magnetische im Eisenkern sind die beiden elektrischen Stromkreise miteinander

Mit Hilfe von sogenannten Transformatoren (kurz nur genannt) kann man elektrische Wechselspannung in weiten Grenzen ändern ("umspannen").

$$U_S:U_P \approx :$$

Das ≈ Zeichen rührt daher, dass nicht das gesamte magnetische Wechselfeld der Primärspule die Sekundärspule durchsetzt.

Belasteter Transformator (d.h. Schalter S geschlossen)

Wird der Transformator wie gezeichnet (auf der Sekundärseite) mit dem Widerstand R belastet, (Schalter S jetzt also geschlossen), so stellt sich die Stromstärke I_S im Sekundärkreis nach der Größe von R ein.

Ist R sehr klein (d.h. R $\approx 0~\Omega$) , dann verhalten sich die Stromstärken wie die der Spulen.

$$I_S:I_P \approx :$$

Das gegensätzliche Verhalten von Spannung und Stromstärke beruht auf der **Energieerhaltung**. Beträgt der Wirkungsgrad η des Trafos nahezu 100%, so gilt:

Die "hineingesteckte Leistung" $P_{primär}$ entspricht etwa der "herausgeholten Leistung" $P_{sekund\"{a}r}$.

Also
$$P_{\text{prim}\ddot{a}r} = U_P \cdot I_P \approx U_S \cdot I_S = P_{\text{sekund}\ddot{a}r}$$

Je größer U_S, desto kleiner I_S und umgekehrt.

Allgemein gilt:
$$U_S \cdot J_S = \eta \cdot U_P \cdot J_P$$

Der Wirkungsgrad η hängt dabei aber nicht nur vom Trafo selbst sondern auch vom Widerstand R im Sekundärkreis ab.