
Physik – Übung * Jahrgangsstufe 9 * t-x- und t-v-Diagramme

Jede Gruppe nimmt zunächst mit dem Zeitmarkengeber einen Messstreifen auf und werten diesen dann aus.

Der Wagen der Masse $\,m\,$ wird mit der Gewichtskraft $\,F_1\,$ der Masse $\,m_1\,$ beschleunigt.

Der Zeitmarkengeber schlägt

in einer Sekunde 50 – mal einen deutlich erkennbaren Punkt auf den Messstreifen. Die vom Wagen zurückgelegten Wege kann man daher recht genau ermitteln.

1) Notiere die Masse m und die Masse m₁, die zu Deinem Messstreifen gehören.

$$\mathbf{m} = \mathbf{m}_1 =$$

2) Markiere auf dem Messstreifen den "Startpunkt".

Welcher zeitliche Abstand Δt besteht zwischen zwei aufeinander folgenden Punkten? Markiere alle Punkte, die den zurückgelegten Weg x des Wagens im zeitlichen Abstand von jeweils 0.10 s angeben.

Bestimme mit dem Meterstab (Lineal) möglichst genau den vom Wagen zurückgelegten Weg x seit dem Start in Abhängigkeit von der Zeit t.

(Tipp: Streifen auf dem Tisch mit Tesafilm festkleben!)

Trage die Messergebnisse in die Tabelle ein!

	_										
t in s	0	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90	1,0
x(t) in cm											
t in s	1,10	1,20	1,30	1,40	1,50	1,60	1,70	1,80	1,90	2,00	2,10

- 3) Trage die Messpunkte in ein t-x-Diagramm ein! Wähle dazu geeignete Einheiten auf den Achsen. Was fällt auf?
- 4) Berechne nun die mittlere Geschwindigkeit v des Wagens während der Zeit t seit dem Start und trage die Werte in die Tabelle ein. [Also $v(t) = \frac{x(t)}{t}$]

t in s	0	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90	1,0
$\frac{-}{v(t)}$ in cm/s											

t in s	1,10	1,20	1,30	1,40	1,50	1,60	1,70	1,80	1,90	2,00	2,10
\overline{v} (t) in cm/s											

- 5) Trage die Messpunkte in ein t-v -Diagramm ein! Wähle dazu geeignete Einheiten auf den Achsen. Was fällt auf?
- 6) Im Unterricht wird Dir gezeigt, dass bei einer Bewegung mit konstanter Beschleunigung a folgende Gesetzmäßigkeiten gelten:
 - (I) Die Momentangeschwindigkeit v = v(t) zum Zeitpunkt t hat den Wert $v(t) = a \cdot t$ Hierbei startet der Wagen zum Zeitpunkt $t_0 = 0$ s mit der Geschwindigkeit v(0s) = 0.
 - (II) Die durchschnittliche Geschwindigkeit $\overset{-}{v}(t)$ bis zum Zeitpunkt t ist genau halb so groß wie die Momentangeschwindigkeit zum Zeitpunkt t.

Also
$$v(t) = 2 \cdot v(t)$$

Begründe nun, dass die Bewegung des Wagens mit konstanter Beschleunigung a stattfindet. Ermittle den Wert der Beschleunigung a für Deinen Wagen mit der Masse m und der "Zugmasse" m_1 . (Runde den Wert der Beschleunigung auf 2 geltende Ziffern.)

7) Vergleiche Deinen Beschleunigungswert a mit dem der anderen Gruppen und trage die Werte in die Tabelle ein.

Kannst Du Zusammenhänge erkennen?

Wagenmasse m in g				
"Zugmasse" m ₁ in g				
Beschleunigung a in cm/s ²				