LK Mathematik * K13 * Übungsaufgaben für den LK Mathematik * Kurvendiskussion

- 1. Gegeben ist die Funktion $f(x) = \frac{x^3 4x}{x^2 3}$.
- a) Bestimmen Sie den maximalen Definitionsbereich und alle Nullstellen.
- b) Untersuchen Sie das Verhalten von f an den Grenzen des Definitionsbereichs. Geben Sie insbesondere alle Asymptoten an.
- c) Zeigen Sie, dass der Graph von f keine horizontalen Tangenten hat. Skizzieren Sie nun den Graphen.
- 2. Gegeben ist die Funktion $g(x) = \frac{x^3 + 5x}{2x^2 + 1}$.
- a) Bestimmen Sie den maximalen Definitionsbereich und alle Nullstellen. Prüfen Sie auf Symmetrie.
- b) Untersuchen Sie das Verhalten von f an den Grenzen des Definitionsbereichs. Geben Sie insbesondere alle Asymptoten an.
- c) Bestimmen Sie alle Hoch- und Tiefpunkte des Graphen von g.
- d) Begründen Sie, dass die sich ins Unendliche erstreckende Fläche zwischen dem Graphen und der schiefen Asymptote keinen endlichen Flächeninhalt hat.
- 3. Gegeben ist $f(x) = \frac{1 + (\ln(x))^2}{1 (\ln(x))^2}$.
- a) Bestimmen Sie den maximalen Definitionsbereich und alle Nullstellen.
- b) Untersuchen Sie das Verhalten von f an den Grenzen des Definitionsbereichs. Geben Sie insbesondere alle Asymptoten an.
- c) Zeigen Sie, dass der Graph von f den Tiefpunkt (1 / 1) besitzt. Skizzieren Sie nun den Graphen.
- 4. Gegeben ist die Funktion $\ln\left(\frac{x+2}{x^2}\right)$.
- a) Bestimmen Sie den maximalen Definitionsbereich und alle Nullstellen.
- b) Untersuchen Sie das Verhalten von g an den Grenzen des Definitionsbereichs. Geben Sie insbesondere alle Asymptoten an.
- c) Untersuchen Sie das Monotonieverhalten von f.
- d) Zeigen Sie, dass der Graph von g genau einen Wendepunkt besitzt. Skizzieren Sie nun den Graphen.
- 5. Gegeben ist die Funktionenschar $f_k(x) = \frac{k e^x}{1 + 2 e^x}$ mit $k \in R \setminus \{0\}$.
- a) Bestimmen Sie den maximalen Definitionsbereich und alle Nullstellen.
- b) Untersuchen Sie das Verhalten von f k an den Grenzen des Definitionsbereichs. Geben Sie insbesondere alle Asymptoten an.
- c) Untersuchen Sie das Monotonieverhalten von f_k.
- d) Zeigen Sie, dass der Graph von f_k genau einen Wendepunkt $W(-\ln(2)/\frac{k}{4})$ hat.
- e) Zeigen Sie, dass der Graph von f_k punktsymmetrisch bezüglich dieses Wendepunktes ist.
- f) Die negative x-Achse, die negative y-Achse und der Graph von f_k schließen eine sich ins Unendliche erstreckende Fläche mit endlichem Inhalt A_k ein. Berechnen Sie A_k .

Lösungen zu "Übungsaufgaben für den LK Mathematik * Kurvendiskussion"

1. a)
$$D_f = R \setminus \{-\sqrt{3}; \sqrt{3}\}$$
; Nullstellen: $x_1 = 0$, $x_{2/3} = \pm 2$

b)
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
; $\lim_{x \to -\sqrt{3} \pm 0} f(x) = \mp \infty$ und $\lim_{x \to \sqrt{3} \pm 0} f(x) = \mp \infty$
senkrechte Asymptoten: $x = -\sqrt{3}$ und $x = \sqrt{3}$
schräg liegende Asymptote: $y = x$ (für $x \to \pm \infty$)

c)
$$f'(x) = \frac{x^4 - 5x^2 + 12}{(x^2 - 3)^2}$$
;

$$f'(x) = 0 \iff x^4 - 5x^2 + 12 = 0 \iff u^2 - 5u + 12 = 0 \text{ (mit } u = x^2)$$
 aber $u^2 - 5u + 12 = 0$ hat keine Lösung wegen $D = 25 - 4 \cdot 12 < 0$, also gibt es keine Stelle mit waagrechter Tangente.

2. a)
$$D_g = R$$
 ; Nullstelle: $x_1 = 0$; $g(-x) = -g(x)$ d.h. G_g ist punktsymmetr.

b)
$$\lim_{x \to \pm \infty} f(x) = \pm \infty$$
; schräg liegende Asymptote: $y = \frac{1}{2} \cdot x$ (für $x \to \pm \infty$)

c)
$$g'(x) = \frac{2x^4 - 7x^2 + 5}{(2x^2 + 1)^2}$$
; $g'(x) = 0 \iff 2u^2 - 7u + 5 = 0$ mit $u = x^2 \iff$

$$2u^2 - 7u + 5 = 0 \iff u_1 = \frac{5}{2} \text{ und } u_2 = 1 \text{ d.h. } x_{1/2} = \pm \frac{\sqrt{10}}{2} \text{ und } x_{3/4} = \pm 1$$

$$\text{HOP}(1/2)$$
, $\text{TIP}(\frac{\sqrt{10}}{2}/\frac{5\sqrt{10}}{8})$ und $\text{HOP}(-\frac{\sqrt{10}}{2}/-\frac{5\sqrt{10}}{8})$, $\text{TIP}(-1/-2)$

d)
$$g(x) - \frac{1}{2} \cdot x = \frac{9x}{4x^2 + 2}$$
 und für $a \ge 1$ gilt

$$\int_{a}^{\infty} \frac{9x}{4x^2 + 2} dx \ge \int_{a}^{\infty} \frac{9x}{9x^2} dx = \int_{a}^{\infty} \frac{1}{x} dx \ge \ln \infty = \infty$$

3. a)
$$D_f = R^+ \setminus \{\frac{1}{e}; e\}$$
; es gibt keine Nullstellen.

b)
$$\lim_{x \to +\infty} f(x) = -1$$
 also waagrechte Asymptote $y = -1$;

$$\lim_{x \to e^{-1} \pm 0} f(x) = \pm \infty \quad \text{und} \quad \lim_{x \to e \pm 0} f(x) = \mp \infty$$

senkrechte Asymptoten: $x = \frac{1}{e}$ und x = e

c)
$$f'(x) = \frac{4 \ln(x)}{x \cdot (1 - (\ln(x))^2)^2}$$
 und $f'(x) = 0 \iff \ln(x) = 0 \iff x_1 = 1$

f ' ändert bei $\,x_1=1\,$ das Vorzeichen von - auf + , d.h. G_f hat bei $\,x_1\,$ den Tiefpunkt $\,$ TIP (1 / 1).

4. a)
$$D_{\epsilon} =]-2$$
; $\infty [\setminus \{0\}]$;

Nullstellen:
$$g(x) = 0 \Leftrightarrow \frac{x+2}{x^2} = 1 \Leftrightarrow x^2 - x - 2 = 0 \Leftrightarrow x_1 = -1, x_2 = 2$$

b)
$$\lim_{x \to +\infty} g(x) = \ln\left(\lim_{x \to +\infty} \frac{x+2}{x^2}\right) = \ln(+0) = -\infty$$
; $\lim_{x \to 0 \pm 0} g(x) = +\infty$; $\lim_{x \to -2+0} g(x) = -\infty$; also senkrechte Asymptoten: $x = -2$ und $x = 0$

c)
$$g'(x) = -\frac{4+x}{x \cdot (x+2)}$$
; $g'(x) > 0$ für $-2 < x < 0$ und $g'(x) < 0$ für $0 < x$

g ist also in] -2; 0 [streng monoton wachsend und in] 0; ∞ [streng monoton fallend.

d)
$$g''(x) = \frac{x^2 + 8x + 8}{x^2(x+2)^2}$$
 und $g''(x) = 0 \iff x^2 + 8x + 8 = 0 \iff x_{1/2} = -4 \pm 2\sqrt{2}$
 $x_2 = -4 - 2\sqrt{2} \notin D_g$ und g'' ändert bei $x_1 = -4 + 2\sqrt{2}$ das Vorzeichen.

Also hat G_g genau einen Wendepunkt bei $\,x_{_1}=\,-4\,+\,2\sqrt{2}\,$.

5. a)
$$D_{f_k} = R$$
; es gibt keine Nullstellen

b)
$$\lim_{x \to -\infty} f(x) = 0$$
 also waagrechte Asymptote $y=0$ für $x \to -\infty$;

 $\lim_{x \to +\infty} f(x) = \frac{k}{2} \text{ also waagrechte Asymptote } y = \frac{k}{2} \text{ für } x \to +\infty;$

c)
$$f_k'(x) = \frac{k e^x}{(1+2e^x)^2}$$
;

für alle $x \in R$ gilt: $f_k(x) > 0$ falls k > 0 und $f_k(x) < 0$ falls k < 0;

für k > 0 ist f_k streng monoton steigend, für k < 0 dagegen streng monoton fallend.

d)
$$f_k''(x) = \frac{ke^x \cdot (1 - 2e^x)}{(1 + 2e^x)^3}$$
 und $f''(x) = 0 \iff 1 - 2e^x = 0 \iff x_1 = -\ln(2)$

 f_k " ändert bei x_1 das Vorzeichen, also hat der Graph bei $W(-\ln(2)/\frac{k}{4})$ einen WP.

e) Zu zeigen ist für
$$W = (x_1/y_1) = (-\ln(2)/\frac{k}{4})$$
:

$$f_k(x_1 + x) - y_1 = y_1 - f_k(x_1 - x) \iff f_k(x_1 + x) + f_k(x_1 - x) = 2y_1$$

linke Seite: $f_k(x_1 + x) + f_k(x_1 - x) = \frac{ke^{-\ln 2 + x}}{1 + 2e^{-\ln 2 + x}} + \frac{ke^{-\ln 2 - x}}{1 + 2e^{-\ln 2 - x}} =$

$$= \frac{\frac{k}{2} \cdot e^{x}}{1 + e^{x}} + \frac{\frac{k}{2 \cdot e^{x}}}{1 + \frac{1}{e^{x}}} = \frac{k}{2} \cdot \left(\frac{e^{x}}{1 + e^{x}} + \frac{1}{e^{x} + 1}\right) = \frac{k}{2} \cdot \frac{e^{x} + 1}{1 + e^{x}} = \frac{k}{2}$$

rechte Seite: $2 \cdot y_1 = 2 \cdot \frac{k}{4} = \frac{k}{2}$ Die geforderte Bedingung ist also erfüllt!

f)
$$\int f_k(x) dx = \frac{k}{2} \cdot \ln(|1 + 2e^x|) + c$$
 und daher

$$A_k = \left| \int\limits_{-\infty}^0 f_k(x) \, dx \, \right| = \left| \left[\frac{k}{2} \cdot \ln \left(\left| 1 + 2e^x \right| \right) \right]_{-\infty}^0 \right| = \left| \frac{k}{2} \cdot \left(\ln 3 - \ln 1 \right) \right| = \frac{\left| k \right| \cdot \ln 3}{2}$$