LK M * K12 * Axiomatische Definition der Wahrscheinlichkeit nach Kolmogorow

Def.: Ist Ω eine Ergebnismenge, dann heißt eine Funktion P, die jedem Ereignis $E \subset \Omega$ genau eine reelle Zahl P(E) zuordnet, ein **Wahrscheinlichkeitsmaß**, wenn folgende drei Bedingungen erfüllt sind:

- (1) $P(E) \ge 0$ für jedes $E \subset \Omega$
- (2) $P(\Omega) = 1$
- (3) Für E_1 , $E_2 \subset \Omega$ mit $E_1 \cap E_2$ gilt: $P(E_1 \cup E_2) = P(E_1) + P(E_2)$

Man sagt, P ist ein nicht negatives (1), normiertes (2), additives (3) Maß.

Beachte:

- ightharpoonup Zu einer Ergebnismenge Ω kann es viele verschiedene Wahrscheinlichkeitsmaße geben.
- ▶ Wegen (3) ist P schon eindeutig festgelegt, wenn man $P(\{\omega\})$ nur für alle Elementarereignisse $\{\omega\}$ angibt.

Aufgabe:

Geben Sie zum Zufallsexperiment "Wurf eines Würfels" mit $\Omega = \{1, 2, 3, 4, 5, 6\}$ zwei verschiedene Wahrscheinlichkeitsmaße an.

Bestimmen Sie anschließend jeweils P("ungerade Zahl").

ω	1	2	3	4	5	6
$P(\{\omega\})$						

ω	1	2	3	4	5	6
$P(\{\omega\})$						

P(,,ungerade Zahl") =

P(,,ungerade Zahl") =

Def.: Man spricht von einem so genannten "Laplace-Experiment", wenn allen Elementarereignissen die gleiche Wahrscheinlichkeit zugeordnet wird. Es gilt dann:

$$P(E) = \frac{|E|}{|\Omega|} = \frac{\text{Anzahl der für E günstigen Fälle}}{\text{Anzahl der möglichen Fälle}}$$

Aufgaben:

- 1. Ein "Laplace-Würfel" wird 6-mal geworfen. Mit welcher Wahrscheinlichkeit treten folgende Ereignisse auf?
 - a) $E_1 = ,,$ Keine 6"
- b) $E_2 =$ "Genau eine 6"
- c) $E_3 =$, Höchstens eine 6"
- c) $E_4 = \text{,Jede Zahl genau einmal}$
- 2. Zwei "Laplace-Würfel" werden gleichzeitig geworfen. Mit welcher Wahrscheinlichkeit treten folgende Ereignisse auf?

- a) $E_1 = ,Augensumme 12$ "
- b) $E_2 =$,,Augensumme 7"
- c) $E_3 = \text{Augensumme 6}^{\circ}$
- d) $E_4 =$,,zwei unterschiedliche Zahlen"
- e) $E_5 = \text{"Augendifferenz 1"}$
- f) $E_6 = \text{,,Augendifferenz 4}$
- g) $E_7 = \text{,Augendifferenz} > 3$ "
- h) $E_8 = ,Augenprodukt 6$ "
- i) $E_9 = ,Augenprodukt 4$ "
- k) $E_{10} = ,Augenprodukt < 5$ "
- l) E_{11} = "eine ungerade und eine gerade Zahl"

LK M * Axiomatische Definition der Wahrscheinlichkeit nach Kolmogorow

Lösungen:

z.B.

ω	1	2	3	4	5	6	ω	1	2	
$P(\{\omega\})$	0,1	0,1	0,3	0,1	0,3	0,1	P({ω})	1/6	1/6	

P(,ungerade Zahl'') = 0.1+0.3+0.3=0.7 P(,ungerade Zahl'')

P(..ungerade Zahl") = 3/6 = 0.5

6

1/6

1/6

1/6

Aufgaben:

1. $\Omega = \{ (111111), (111112), (111113), \dots, (666666) \}$ und $|\Omega| = 6^6 = 46656$

a)
$$P(\text{,,Keine } 6^\circ) = \frac{5^6}{6^6} = \frac{15625}{46656} \approx 33,5\%$$

b) P(,,Genau eine 6") =
$$\frac{6 \cdot 5^5}{6^6} = \frac{18750}{46656} \approx 40,2\%$$

c) P(,,Höchstens eine 6") = P(,,Keine 6") + P(,,Genau eine 6") = $\frac{5^6 + 6 \cdot 5^5}{6^6} = \frac{15625 + 18750}{46656} \approx 33,5\% + 40,2\% = 73,7\%$

d) P(,,Jede Zahl genau einmal") =
$$\frac{6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1}{6^6} = \frac{720}{46656} \approx 1,5\%$$

2. $\Omega = \{ (11), (12), (13), (14), (15), (16), (21), \dots, (66) \}$ und $|\Omega| = 6^2 = 36$

a) P(,,Augensumme 12") =
$$\frac{1}{6^2} = \frac{1}{36} \approx 2,8\%$$

b) P(,,Augensumme 7") =
$$\frac{2 \cdot 3}{36} = \frac{6}{36} \approx 16,7\%$$

c) P(,,Augensumme 6") =
$$\frac{2 \cdot 2 + 1}{36} = \frac{5}{36} \approx 13,9\%$$

d) P(,,2 unterschiedl. Zahlen") = 1- P(,,2 gleiche Zahlen") = $1 - \frac{6}{36} = \frac{30}{36} \approx 83,3\%$

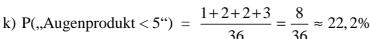
e) P(,,Augendifferenz 1") =
$$\frac{2.5}{36} = \frac{10}{36} \approx 27.8\%$$

f) P(,,Augendifferenz 4") =
$$\frac{2 \cdot 2}{36} = \frac{4}{36} \approx 11,1\%$$

g) P(,,Augendifferenz > 3") =
$$\frac{2 \cdot 2}{36} + \frac{2 \cdot 1}{36} = \frac{6}{36} \approx 16,7\%$$

h) P(,,Augenprodukt 6") =
$$\frac{2 \cdot 2}{36} = \frac{4}{36} \approx 11,1\%$$

i) P(,,Augenprodukt 4") =
$$\frac{2+1}{36} = \frac{3}{36} \approx 8,3\%$$



l) P(,,eine ungerade und eine gerade Zahl") =
$$\frac{3 \cdot 3 + 3 \cdot 3}{36} = \frac{18}{36} = 50,0\%$$