
Berechnung der kartesischen Koordinaten eines Punktes P auf der Erdoberfläche mit den geographischen Koordinaten $P(\varphi; \lambda)$ Sphärischer Abstand zweier Punkte auf der Erdoberfläche

- a) Tragen Sie die Koordinatenachsen (x, y, z) und φ und λ und den Kugelradius r ein.
- b) Tragen Sie die kartesischen Koordinaten von P $(x_P/y_P/z_P)$ ein und berechnen Sie diese in Abhängigkeit von φ und λ .
- c) Ist T ein weiterer Punkt der Erdoberfläche, so kann man nun \overline{PT} , den räumlichen Abstand (Tunnel durch Erde!) von P und T ermitteln. Bestimmen Sie die Formel für \overline{PT} in Abhängigkeit von den kartesischen Koordinaten von P und T.
- d) Bestimmen Sie nun den Mittelpunktswinkel $\mu = \triangle$ PMT in Abhängigkeit von \overline{PT} .
- e) Ermitteln Sie nun den sphärischen Abstand \widehat{PT} der beiden Punkte P und T auf der Einheitskugel und ermitteln Sie nun den Abstand von P und T auf der Erdkugel (Erdradius: 6370 km).

Die ermittelten und auf diesem Blatt notierten Formeln können nun für ein Excel-Arbeitsblatt verwendet werden.

Berechnung des sphärischen Abstands zweier Punkte der Erdoberfläche unter Verwendung der Tabellenkalkulation Excel

Hinweise zur Verwendung von Excel

- 1. In jede Zelle kann man einen Wert eingeben oder einen Wert durch eine Formel berechnen lassen.
- 2. Jeder Zelleninhalt kann über den Namen der Zelle (A1, A2, A3, ..., B1, ...) in Formeln verwendet werden.
- 3. Berechnungen und Formeln in Zellen beginnen immer mit = ...
- 4. Den Wert der Kreiszahl π erhält man mit PI().
- 5. Bei der Berechnung von trigonometrischen Funktionen müssen Winkel immer im Bogenmaß eingegeben werden. Die Umrechnung eines Winkels, der im Gradmaß in der Zelle C5 steht, lautet also = C5 * PI() / 180.
- 6. Mit =RUNDEN(F6;2) wird in dieser Zelle der auf 2 Dezimalstellen gerundete Wert der Zelle F6 berechnet.
- 7. Die Wurzel eines Terms wird mit WURZEL(...), das Quadrat mit (...)^2 ermittelt. Die Umkehrfunktion von sin lautet arcsin(...) und liefert den Winkel im Bogenmaß.

Hinweise zur Berechnung des sphärischen Abstands

Die Ortsvektoren zu den Orten A (φ_1/ϑ_1) und B(φ_2/ϑ_2) lauten

$$\begin{pmatrix} \cos(\varphi_1)\cos(\lambda_1) \\ \cos(\varphi_1)\sin(\lambda_1) \\ \sin(\varphi_1) \end{pmatrix} \text{ und } \begin{pmatrix} \cos(\varphi_2)\cos(\lambda_2) \\ \cos(\varphi_2)\sin(\lambda_2) \\ \sin(\varphi_2) \end{pmatrix}$$

Hierbei gibt φ die geographische Breite und λ die geographische Länge an. Verwenden Sie negative Winkelwerte für westliche Länge und südliche Breite. Nach den bereits ermittelten Formeln kann nun der sphärische Abstand berechnet werden.

Zum Testen: München (48,1°/11,6°) und Rio (-22,9°/-43,2°) haben den sphärischen Abstand 9592 km.

Wer sich das Erstellen eines Excel-Arbeitsblattes nicht zutraut, kann die Excel-Datei "Sphärischer_Abstand" öffnen. Dort befindet sich eine geeignete Lösung der Aufgabe.

Füllen Sie die Tabelle auf der Rückseite dieses Blattes aus.

Geographische Koordinaten bekannter Städte:

Ort	Breite	Länge	sphärischer	"Tunnelabstand"
	in Grad	in Grad	Abstand zu Haar	zu Haar
			in km	in km
München	48,1	11,6		
Beijing	39,9	116,5		
Bombay	16,1	72,8		
Honolulu	21,3	-157,9		
Johannesburg	-26,2	28,1		
Lissabon	34,7	-9,2		
Los Angeles	34,1	-118,2		
Madrid	40,4	-3,7		
Manila	14,6	121		
Miami	25,8	-80,2		
Melbourne	-38,1	144,9		
Moskau	55,8	37,6		
New York	40,7	-74		
Paris	48,9	2,6		
Quito	-0,2	-78,5		
Rio	-22,9	-43,2		
Rom	41,9	12,5		
Saigon	10,8	106,7		
San Franzisko	37,8	-122,4		
Tokyo	35,6	139,8		
Wellington	-41,4	174,7		