1. Extemporale aus der Mathematik, Klasse 9b, 19.10.2006 Gruppe A
2. Vereinfache durch teilweises Radizieren.
a) $\sqrt{162} \cdot \sqrt{6}$
b) $\sqrt{363 \mathrm{a}^{2}}$
3. Mache den Nenner rational.
a) $\frac{5-3 \sqrt{5}}{\sqrt{15}}$
b) $\frac{\sqrt{2}}{\sqrt{6}+\sqrt{14}}$
c) $\frac{11 \sqrt{2}}{5+\sqrt{14}}$
4. Vereinfache
a) $\frac{1}{2} \sqrt{8} \cdot(6 \sqrt{10}-\sqrt{6})$
b) $(\sqrt{14,4}+\sqrt{0,9}) \cdot \sqrt{5}$
5. Gib die Lösungsmenge der Gleichung an!
a) $\mathrm{x}^{2}-3=72$
b) $\sqrt{196}-\mathrm{x}^{2}=6$

Aufgabe	1 a	b	2 a	b	c	3 a	b	4 a	b	Σ
Punkte	2	2	2	2	2	2	2	2	2	18

1. Extemporale aus der Mathematik, Klasse 9b, 19.10.2006 Gruppe B

1. Vereinfache durch teilweises Radizieren.
a) $\sqrt{162} \cdot \sqrt{10}$
b) $\sqrt{242 \mathrm{~b}^{2}}$
2. Mache den Nenner rational.
a) $\frac{3-5 \sqrt{3}}{\sqrt{15}}$
b) $\frac{\sqrt{2}}{\sqrt{6}+\sqrt{10}}$
c) $\frac{6 \sqrt{2}}{5+\sqrt{22}}$
3. Vereinfache
a) $\frac{1}{2} \sqrt{8} \cdot(6 \sqrt{6}-\sqrt{10})$
b) $(\sqrt{12,1}+\sqrt{0,9}) \cdot \sqrt{5}$
4. Gib die Lösungsmenge der Gleichung an!
a) $\mathrm{x}^{2}-3=122$
b) $\sqrt{169}-\mathrm{x}^{2}=5$

Aufgabe	1 a	b	2 a	b	c	3 a	b	4 a	b	\sum
Punkte	2	2	2	2	2	2	2	2	2	18

1. a) $\sqrt{162} \cdot \sqrt{6}=\sqrt{2 \cdot 81 \cdot 2 \cdot 3}=\sqrt{2^{2} \cdot 9^{2} \cdot 3}=2 \cdot 9 \cdot \sqrt{3}=18 \cdot \sqrt{3}$
b) $\sqrt{363 \mathrm{a}^{2}}=\sqrt{3 \cdot 121 \cdot \mathrm{a}^{2}}=\sqrt{3 \cdot 11^{2} \cdot \mathrm{a}^{2}}=11 \cdot|\mathrm{a}| \cdot \sqrt{3}$
2. a) $\frac{5-3 \sqrt{5}}{\sqrt{15}}=\frac{(5-3 \sqrt{5}) \cdot \sqrt{15}}{\sqrt{15} \cdot \sqrt{15}}=\frac{5 \cdot \sqrt{15}}{15}-\frac{3 \cdot \sqrt{5 \cdot 5 \cdot 3}}{15}=\frac{\sqrt{15}}{3}-\sqrt{3}$
b) $\frac{\sqrt{2}}{\sqrt{6}+\sqrt{14}}=\frac{\sqrt{2}}{\sqrt{2} \cdot(\sqrt{3}+\sqrt{7})}=\frac{1 \cdot(\sqrt{7}-\sqrt{3})}{(\sqrt{3}+\sqrt{7}) \cdot(\sqrt{7}-\sqrt{3})}=\frac{\sqrt{7}-\sqrt{3}}{7-3}=\frac{1}{4} \sqrt{7}-\frac{1}{4} \sqrt{3}$
c) $\frac{11 \sqrt{2}}{5+\sqrt{14}}=\frac{11 \sqrt{2} \cdot(5-\sqrt{14})}{(5+\sqrt{14}) \cdot(5-\sqrt{14})}=\frac{55 \sqrt{2}-11 \sqrt{2 \cdot 2 \cdot 7}}{25-14}=\frac{55 \sqrt{2}-22 \sqrt{7}}{11}=5 \cdot \sqrt{2}-2 \cdot \sqrt{7}$
3. a) $\frac{1}{2} \sqrt{8} \cdot(6 \sqrt{10}-\sqrt{6})=\frac{6}{2} \cdot \sqrt{8 \cdot 10}-\frac{1}{2} \cdot \sqrt{8 \cdot 6}=3 \cdot 4 \cdot \sqrt{5}-\frac{1}{2} \cdot 4 \cdot \sqrt{3}=12 \sqrt{5}-2 \sqrt{3}$
b) $\quad(\sqrt{14,4}+\sqrt{0,9}) \cdot \sqrt{5}=\sqrt{\frac{144 \cdot 5}{10}}+\sqrt{\frac{9 \cdot 5}{10}}=12 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}+3 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}=6 \sqrt{2}+\frac{3}{2} \sqrt{2}=7,5 \sqrt{2}$
4. a) $\mathrm{x}^{2}-3=72 \Leftrightarrow \mathrm{x}^{2}=75 \quad \Leftrightarrow \quad \mathrm{x}_{1 / 2}= \pm \sqrt{75}= \pm 5 \sqrt{3}$
b) $\sqrt{196}-\mathrm{x}^{2}=6 \Leftrightarrow 14-\mathrm{x}^{2}=6 \Leftrightarrow \mathrm{x}^{2}=8 \Leftrightarrow \mathrm{x}_{1 / 2}= \pm 2 \sqrt{2}$

Lösungen zur 1. Extemporale aus der Mathematik, Klasse 9b, Gruppe B

1. a) $\sqrt{162} \cdot \sqrt{10}=\sqrt{2 \cdot 81 \cdot 2 \cdot 5}=\sqrt{2^{2} \cdot 9^{2} \cdot 5}=2 \cdot 9 \cdot \sqrt{5}=18 \cdot \sqrt{5}$
b) $\quad \sqrt{242 \mathrm{a}^{2}}=\sqrt{2 \cdot 121 \cdot \mathrm{a}^{2}}=\sqrt{2 \cdot 11^{2} \cdot \mathrm{a}^{2}}=11 \cdot|\mathrm{a}| \cdot \sqrt{2}$
2. a) $\frac{3-5 \sqrt{3}}{\sqrt{15}}=\frac{(3-5 \sqrt{3}) \cdot \sqrt{15}}{\sqrt{15} \cdot \sqrt{15}}=\frac{3 \cdot \sqrt{15}}{15}-\frac{5 \cdot \sqrt{3 \cdot 3 \cdot 5}}{15}=\frac{\sqrt{15}}{5}-\sqrt{5}$
b) $\frac{\sqrt{2}}{\sqrt{6}+\sqrt{10}}=\frac{\sqrt{2}}{\sqrt{2} \cdot(\sqrt{3}+\sqrt{5})}=\frac{1 \cdot(\sqrt{5}-\sqrt{3})}{(\sqrt{3}+\sqrt{5}) \cdot(\sqrt{5}-\sqrt{3})}=\frac{\sqrt{5}-\sqrt{3}}{5-3}=\frac{1}{2} \sqrt{5}-\frac{1}{2} \sqrt{3}$
c) $\frac{6 \sqrt{2}}{5+\sqrt{22}}=\frac{6 \sqrt{2} \cdot(5-\sqrt{22})}{(5+\sqrt{22}) \cdot(5-\sqrt{22})}=\frac{30 \sqrt{2}-6 \sqrt{2 \cdot 2 \cdot 11}}{25-22}=\frac{30 \sqrt{2}-12 \sqrt{11}}{3}=10 \cdot \sqrt{2}-4 \cdot \sqrt{11}$
3. a) $\frac{1}{2} \sqrt{8} \cdot(6 \sqrt{6}-\sqrt{10})=\frac{6}{2} \cdot \sqrt{8 \cdot 6}-\frac{1}{2} \cdot \sqrt{8 \cdot 10}=3 \cdot 4 \cdot \sqrt{3}-\frac{1}{2} \cdot 4 \cdot \sqrt{5}=12 \sqrt{3}-2 \sqrt{5}$
b) $\quad(\sqrt{12,1}+\sqrt{0,9}) \cdot \sqrt{5}=\sqrt{\frac{121 \cdot 5}{10}}+\sqrt{\frac{9 \cdot 5}{10}}=11 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}+3 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}=\frac{11}{2} \sqrt{2}+\frac{3}{2} \sqrt{2}=7 \sqrt{2}$
4. a) $\mathrm{x}^{2}-3=122 \Leftrightarrow \mathrm{x}^{2}=125 \quad \Leftrightarrow \quad \mathrm{x}_{1 / 2}= \pm \sqrt{125}= \pm 5 \sqrt{5}$
b) $\quad \sqrt{169}-\mathrm{x}^{2}=5 \Leftrightarrow 13-\mathrm{x}^{2}=5 \Leftrightarrow \mathrm{x}^{2}=8 \quad \Leftrightarrow \mathrm{x}_{1 / 2}= \pm 2 \sqrt{2}$
