Mathematik * Jahrgangsstufe 11

Funktionen mit Parameter, Diskussion einer Funktionenschar

Die Funktion $f_k(x) = x^3 + k \cdot x$ enthält den Parameter $k \in R$.

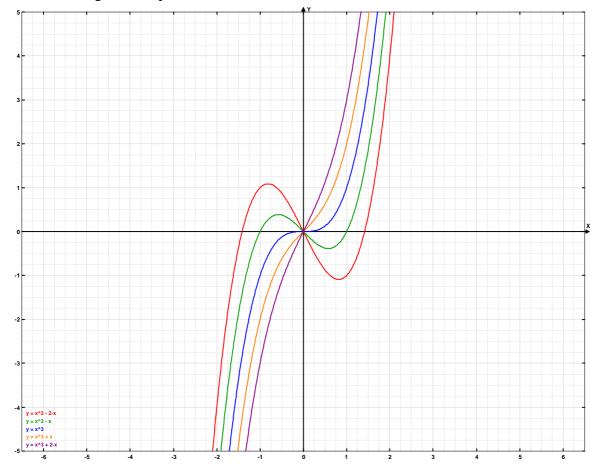
Für jedes $k \in R$ erhält man eine andere Funktion.

Für k = 3 ergibt sich z.B. $f_3(x) = x^3 + 3x$, für k = -1,5 dagegen $f_{-1,5}(x) = x^3 - 1,5x$.

Alle diese Funktionen $f_k \pmod{k \in R}$ fasst man zu einer so genannten Funktionenschar zusammen.

Mit geeigneter Software (z.B. WZ Grapher von Walter Zorn unter http://www.walterzorn.de) kann man sich die einzelnen Kurven der Schar anschauen.

Das Bild zeigt die Graphen für die Parameterwerte k = -2, -1, 0, 1 und 2.



Mit dem mathe online Excel Plotter (http://www.mathe-online.at/) kann man sogar den Parameter mit Hilfe eines Schiebereglers verändern und dabei unmittelbar die Veränderung der Kurve betrachten.

Bei der Diskussion einer Kurvenschar berechnet man alle interessanten Punkte wie z.B. Hoch-, Tief-, Terrassen- und Wendepunkte in Abhängigkeit vom Parameter und kann dann typische Graphen der Schar für einige wenige Werte des Parameters in ein Diagramm eintragen.

Diskussion der Kurvenschar $f_k(x) = x^3 + k \cdot x$

Definitionsbereich: $D_{f_k} = D_k = R$

Nullstellen:

 $f_k(x) = 0 \iff x^3 + k \cdot x = 0 \iff x \cdot (x^2 + k) = 0 \iff x_1 = 0 \text{ und } x_{2/3} = \pm \sqrt{-k} \text{ nur falls } k < 0$ für k = 0 ist $x_{1,2,3} = 0$ eine dreifache Nullstelle (\rightarrow Terrassenpunkt an der Stelle 0)

Symmetrie: $f_k(-x) = -x^3 - k \cdot x = -f_k(x)$

alle Graphen der Schar sind also punktsymmetrisch zum Ursprung

Verhalten an den Rändern des Definitionsbereichs:

$$\lim_{x \to \pm \infty} f_k(x) = \lim_{x \to \pm \infty} x \cdot (x^2 + k) = "\pm \infty \cdot \infty" = \pm \infty$$

Ableitungen:

$$f_{k}'(x) = 3x^{2} + k$$
 und $f_{k}''(x) = 6x$

waagrechte Tangenten:

$$f_k'(x) = 0 \iff 3x^2 + k = 0 \iff x^2 = -\frac{k}{3} \iff x_{4/5} = \pm \sqrt{-\frac{k}{3}} \quad nur \ falls \ k < 0$$

für k = 0 ist $x_1 = 0$ eine doppelte Nullstelle von f_k , d.h. (0; 0) ist ein Terrassenpunkt

Für k < 0 gilt:

Bei x_4 wechselt $f_k'(x)$ das Vorzeichen von – auf +, d.h. bei x_4 hat f_k ein Minimum. Bei x_5 wechselt $f_k'(x)$ das Vorzeichen von + auf –, d.h. bei x_5 hat f_k ein Maximum.

Also Tiefpunkt TIP
$$\left(\sqrt{-\frac{k}{3}} \ ; \ \frac{2k}{3} \cdot \sqrt{-\frac{k}{3}}\right)$$
 und Hochpunkt $HOP\left(-\sqrt{-\frac{k}{3}} \ ; \ -\frac{2k}{3} \cdot \sqrt{-\frac{k}{3}}\right)$

Für k > 0 gibt es keine Stellen mit waagrechter Tangente.

Flachpunkte:

 f_k "(x) = 0 \Leftrightarrow 6x = 0 \Leftrightarrow x_1 = 0 und f_k "(x) ändert bei x_1 = 0 das Vorzeichen Jede Kurve der Schar hat also den Wendepunkt WP(0; 0).

Im Diagramm sind die Kurven der Schar mit den Parameterwerten -6, -4, -2, 0, 2, 4 und 6 für k eingezeichnet.

