1. Extemporale aus der Mathematik, Klasse 9b, 26.10.2006 Gruppe A
2. Vereinfache durch teilweises Radizieren.
a) $\sqrt{450} \cdot \sqrt{14}$
b) $\sqrt{338 \mathrm{a}^{2}}$
3. Mache den Nenner rational.
a) $\frac{9-3 \sqrt{3}}{\sqrt{12}}$
b) $\frac{6 \cdot \sqrt{3}}{\sqrt{6}+\sqrt{15}}$
c) $\frac{7 \sqrt{5}}{5+\sqrt{11}}$
4. Vereinfache
a) $\frac{1}{3} \sqrt{27} \cdot(8 \sqrt{15}-\sqrt{12})$
b) $(\sqrt{32,4}+\sqrt{2,5}) \cdot \sqrt{5}$
5. Gib die Lösungsmenge der Gleichung an!
a) $2 \mathrm{x}^{2}-3=429$
b) $\sqrt{225}-x^{2}=7$

Aufgabe	1 a	b	2 a	b	c	3 a	b	4 a	b	Σ
Punkte	2	2	2	2	2	2	2	2	2	18

1. Extemporale aus der Mathematik, Klasse 9b, 26.10.2006 Gruppe B

1. Vereinfache durch teilweises Radizieren.
a) $\sqrt{450} \cdot \sqrt{22}$
b) $\sqrt{507 \mathrm{~b}^{2}}$
2. Mache den Nenner rational.
a) $\frac{3-6 \sqrt{3}}{\sqrt{12}}$
b) $\frac{10 \cdot \sqrt{3}}{\sqrt{6}+\sqrt{21}}$
c) $\frac{5 \sqrt{7}}{6+\sqrt{11}}$
3. Vereinfache
a) $\frac{1}{3} \sqrt{27} \cdot(8 \sqrt{12}-\sqrt{15})$
b) $(\sqrt{28,9}+\sqrt{1,6}) \cdot \sqrt{5}$
4. Gib die Lösungsmenge der Gleichung an!
a) $3 x^{2}-2=646$
b) $\sqrt{121}-\mathrm{x}^{2}=3$

Aufgabe	1 a	b	2 a	b	c	3 a	b	4 a	b	Σ
Punkte	2	2	2	2	2	2	2	2	2	18

1. a) $\sqrt{450} \cdot \sqrt{14}=\sqrt{25 \cdot 9 \cdot 2 \cdot 2 \cdot 7}=\sqrt{5^{2} \cdot 3^{2} \cdot 2^{2} \cdot 7}=5 \cdot 3 \cdot 2 \cdot \sqrt{7}=30 \cdot \sqrt{7}$
b) $\quad \sqrt{338 \mathrm{a}^{2}}=\sqrt{2 \cdot 169 \cdot \mathrm{a}^{2}}=\sqrt{2 \cdot 13^{2} \cdot \mathrm{a}^{2}}=13 \cdot|\mathrm{a}| \cdot \sqrt{2}$
2. a) $\frac{9-3 \sqrt{3}}{\sqrt{12}}=\frac{(9-3 \sqrt{3}) \cdot \sqrt{3}}{2 \cdot \sqrt{3} \cdot \sqrt{3}}=\frac{9 \cdot \sqrt{3}-3 \cdot 3}{2 \cdot 3}=\frac{3 \cdot \sqrt{3}}{2}-\frac{3}{2}$
b) $\quad \frac{6 \cdot \sqrt{3}}{\sqrt{6}+\sqrt{15}}=\frac{6 \cdot \sqrt{3}}{\sqrt{3} \cdot(\sqrt{2}+\sqrt{5})}=\frac{6 \cdot(\sqrt{5}-\sqrt{2})}{(\sqrt{2}+\sqrt{5}) \cdot(\sqrt{5}-\sqrt{2})}=\frac{6 \cdot(\sqrt{5}-\sqrt{2})}{5-2}=2 \sqrt{5}-2 \sqrt{2}$
c) $\frac{7 \sqrt{5}}{5+\sqrt{11}}=\frac{7 \sqrt{5} \cdot(5-\sqrt{11})}{(5+\sqrt{11}) \cdot(5-\sqrt{11})}=\frac{35 \sqrt{5}-7 \sqrt{55}}{25-11}=\frac{35 \sqrt{5}-7 \sqrt{55}}{14}=\frac{5}{2} \cdot \sqrt{5}-\frac{1}{2} \cdot \sqrt{55}$
3. a) $\frac{1}{3} \sqrt{27} \cdot(8 \sqrt{15}-\sqrt{12})=\frac{3}{3} \cdot \sqrt{3} \cdot(8 \cdot \sqrt{15}-2 \cdot \sqrt{3})=8 \cdot \sqrt{3 \cdot 3 \cdot 5}-2 \cdot 3=24 \cdot \sqrt{5}-6$
b) $\quad(\sqrt{32,4}+\sqrt{2,5}) \cdot \sqrt{5}=\sqrt{\frac{324 \cdot 5}{10}}+\sqrt{\frac{25 \cdot 5}{10}}=18 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}+5 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}=9 \sqrt{2}+\frac{5}{2} \sqrt{2}=\frac{23}{2} \sqrt{2}$
4. a) $2 x^{2}-3=429 \Leftrightarrow 2 x^{2}=432 \Leftrightarrow x^{2}=216 \Leftrightarrow x_{1 / 2}= \pm \sqrt{36 \cdot 6}= \pm 6 \sqrt{6}$
b) $\sqrt{225}-\mathrm{x}^{2}=7 \Leftrightarrow 15-\mathrm{x}^{2}=7 \Leftrightarrow \mathrm{x}^{2}=8 \Leftrightarrow \mathrm{x}_{1 / 2}= \pm 2 \sqrt{2}$

Lösungen zur 1. Extemporale aus der Mathematik, Klasse 9b,
 Gruppe B

26.10.2006

1. a) $\sqrt{450} \cdot \sqrt{22}=\sqrt{25 \cdot 9 \cdot 2 \cdot 2 \cdot 11}=\sqrt{5^{2} \cdot 3^{2} \cdot 2^{2} \cdot 11}=5 \cdot 3 \cdot 2 \cdot \sqrt{11}=30 \cdot \sqrt{11}$
b) $\quad \sqrt{507 b^{2}}=\sqrt{3 \cdot 169 \cdot b^{2}}=\sqrt{3 \cdot 13^{2} \cdot b^{2}}=13 \cdot|b| \cdot \sqrt{3}$
2. a) $\frac{3-6 \sqrt{3}}{\sqrt{12}}=\frac{(3-6 \sqrt{3}) \cdot \sqrt{3}}{2 \cdot \sqrt{3} \cdot \sqrt{3}}=\frac{3 \cdot \sqrt{3}-6 \cdot 3}{2 \cdot 3}=\frac{\sqrt{3}-6}{2}=\frac{1}{2} \cdot \sqrt{3}-3$
b) $\quad \frac{10 \cdot \sqrt{3}}{\sqrt{6}+\sqrt{21}}=\frac{10 \cdot \sqrt{3}}{\sqrt{3} \cdot(\sqrt{2}+\sqrt{7})}=\frac{10 \cdot(\sqrt{7}-\sqrt{2})}{(\sqrt{2}+\sqrt{7}) \cdot(\sqrt{7}-\sqrt{2})}=\frac{10 \cdot(\sqrt{7}-\sqrt{2})}{7-2}=2 \sqrt{7}-2 \sqrt{2}$
c) $\frac{5 \sqrt{7}}{6+\sqrt{11}}=\frac{5 \sqrt{7} \cdot(6-\sqrt{11})}{(6+\sqrt{11}) \cdot(6-\sqrt{11})}=\frac{30 \sqrt{7}-5 \sqrt{77}}{36-11}=\frac{5 \cdot(6 \cdot \sqrt{7}-\sqrt{77})}{25}=\frac{6}{5} \cdot \sqrt{7}-\frac{1}{5} \cdot \sqrt{77}$
3. a) $\frac{1}{3} \sqrt{27} \cdot(8 \sqrt{12}-\sqrt{15})=\frac{3}{3} \cdot \sqrt{3} \cdot(8 \cdot 2 \cdot \sqrt{3}-\sqrt{3 \cdot 5})=16 \cdot 3-\sqrt{3 \cdot 3 \cdot 5}=48-3 \cdot \sqrt{5}$
b) $\quad(\sqrt{28,9}+\sqrt{1,6}) \cdot \sqrt{5}=\sqrt{\frac{289 \cdot 5}{10}}+\sqrt{\frac{16 \cdot 5}{10}}=17 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}+4 \cdot \sqrt{\frac{1 \cdot 2}{2 \cdot 2}}=\frac{17}{2} \sqrt{2}+2 \sqrt{2}=\frac{21}{2} \cdot \sqrt{2}$
4. a) $3 x^{2}-2=646 \Leftrightarrow 3 x^{2}=648 \Leftrightarrow x^{2}=216 \Leftrightarrow x_{1 / 2}= \pm \sqrt{36 \cdot 6}= \pm 6 \sqrt{6}$
b) $\quad \sqrt{121}-\mathrm{x}^{2}=3 \Leftrightarrow 11-\mathrm{x}^{2}=3 \Leftrightarrow \mathrm{x}^{2}=8 \Leftrightarrow \mathrm{x}_{1 / 2}= \pm 2 \sqrt{2}$
