Mathematik * Jahrgangsstufe 9 * Rechnen mit Wurzeln

Bei allen Aufgaben gilt:
Beim Ergebnis ist so weit wie möglich zu radizieren und Nenner müssen rational sein.

1. Vereinfache
a) $\sqrt{12} \cdot\left(\frac{1}{2} \cdot \sqrt{0,27}-\frac{2}{3} \cdot \sqrt{0,6}\right)$
b) $\sqrt{845 \mathrm{x}^{3}}-\sqrt{45} \mathrm{x} \cdot(\sqrt{0,81 \mathrm{x}}-\sqrt{20})$
c) $\frac{1-\sqrt{3}}{2-\sqrt{6}}$
d) $\frac{\sqrt{6}-\sqrt{3}}{\sqrt{3}+\sqrt{6}}$
e) $\frac{\sqrt{0,9} \cdot \sqrt{25,6}}{\sqrt{64,8}}$
f) $\frac{\sqrt{7,26} \cdot \sqrt{6}}{3+\sqrt{6}}$
g) $\frac{1}{\sqrt{2+\sqrt{3}}}$
h) $\frac{\sqrt{20}}{1+\sqrt{2+3}}$
2. Bestimme alle Lösungen der Gleichung
a) $2 \cdot x^{2}-3=4$
b) $\quad \sqrt{2} \cdot x^{2}+\sqrt{3}=\sqrt{5}$
c) $18-0,5 \cdot \mathrm{x}^{2}=11$
d) $5-(4-\sqrt{3}) \cdot x^{2}=2$
e) $\frac{x^{2}-1}{\sqrt{20}}=\sqrt{0,45}$
f) $\frac{x^{2}-\sqrt{2}}{\sqrt{8}}=\frac{\sqrt{150}}{6}$

Mathematik * Jahrgangsstufe 9 * Rechnen mit Wurzeln

Lösungen

1. a) $\sqrt{12} \cdot\left(\frac{1}{2} \cdot \sqrt{0,27}-\frac{2}{3} \cdot \sqrt{0,6}\right)=\frac{2 \cdot \sqrt{3} \cdot \sqrt{\frac{9 \cdot 3}{100}}}{2}-\frac{2 \cdot \sqrt{3} \cdot 2 \cdot \sqrt{\frac{60}{100}}}{3}=$

$$
\sqrt{\frac{3 \cdot 9 \cdot 3}{10 \cdot 10}}-\frac{2 \cdot 2 \cdot \sqrt{\frac{3 \cdot 3 \cdot 4 \cdot 5}{10 \cdot 10}}}{3}=\frac{3 \cdot 3}{10}-\frac{4 \cdot \frac{3 \cdot 2}{10} \cdot \sqrt{5}}{3}=0,9-0,8 \cdot \sqrt{5}
$$

b) $\quad \sqrt{845 \mathrm{x}^{3}}-\sqrt{45} \mathrm{x} \cdot(\sqrt{0,81 \mathrm{x}}-\sqrt{20})=\sqrt{5 \cdot 13^{2} \cdot \mathrm{x}^{2} \cdot \mathrm{x}}-3 \mathrm{x} \cdot \sqrt{5} \cdot(0,9 \cdot \sqrt{\mathrm{x}}-2 \cdot \sqrt{5})=$

$$
=13 x \cdot \sqrt{5 x}-2,7 x \cdot \sqrt{5 x}+6 x \cdot 5=10,3 x \cdot \sqrt{5}+30 x \quad(=(10,3 \cdot \sqrt{5}+30) \cdot x)
$$

c) $\frac{1-\sqrt{3}}{2-\sqrt{6}}=\frac{(1-\sqrt{3}) \cdot(2+\sqrt{6})}{(2-\sqrt{6}) \cdot(2+\sqrt{6})}=\frac{2+\sqrt{6}-2 \sqrt{3}-3 \sqrt{2}}{4-6}=-1-0,5 \sqrt{6}+\sqrt{3}+1,5 \sqrt{2}$
d) $\frac{\sqrt{6}-\sqrt{3}}{\sqrt{3}+\sqrt{6}}=\frac{(\sqrt{6}-\sqrt{3}) \cdot(\sqrt{6}-\sqrt{3})}{(\sqrt{3}+\sqrt{6}) \cdot(\sqrt{6}-\sqrt{3})}=\frac{6-2 \sqrt{18}+3}{6-3}=\frac{9-6 \sqrt{2}}{3}=3-2 \sqrt{2}$
e) $\frac{\sqrt{0,9} \cdot \sqrt{25,6}}{\sqrt{64,8}}=\frac{\sqrt{\frac{3^{2} \cdot 16^{2}}{100}}}{\sqrt{\frac{81 \cdot 4 \cdot 2 \cdot 10}{100}}}=\frac{3 \cdot 16}{9 \cdot 2 \cdot \sqrt{4 \cdot 5}}=\frac{4 \cdot \sqrt{5}}{3 \cdot \sqrt{5} \cdot \sqrt{5}}=\frac{4}{15} \cdot \sqrt{5}$
f) $\frac{\sqrt{7,26} \cdot \sqrt{6}}{3+\sqrt{6}}=\frac{\sqrt{\frac{6 \cdot 121 \cdot 6}{100}}}{3+\sqrt{6}}=\frac{\frac{6 \cdot 11}{10} \cdot(3-\sqrt{6})}{(3+\sqrt{6}) \cdot(3-\sqrt{6})}=\frac{6,6 \cdot(3-\sqrt{6})}{9-6}=2,2 \cdot(3-\sqrt{6})$
$=6,6-2,2 \sqrt{6}$
g) $\frac{1}{\sqrt{2+\sqrt{3}}}=\frac{1 \cdot \sqrt{2+\sqrt{3}}}{\sqrt{2+\sqrt{3}} \cdot \sqrt{2+\sqrt{3}}}=\frac{\sqrt{2+\sqrt{3}} \cdot(2-\sqrt{3})}{(2+\sqrt{3}) \cdot(2-\sqrt{3})}=$

$$
=2 \cdot \sqrt{2+\sqrt{3}}-\sqrt{3 \cdot(2+\sqrt{3})}=2 \cdot \sqrt{2+\sqrt{3}}-\sqrt{6+3 \cdot \sqrt{3})}
$$

h) $\frac{\sqrt{20}}{1+\sqrt{2+3}}=\frac{2 \cdot \sqrt{5} \cdot(\sqrt{5}-1)}{(1+\sqrt{5}) \cdot(\sqrt{5}-1)}=\frac{2 \cdot 5-2 \cdot \sqrt{5}}{5-1}=\frac{5-\sqrt{5}}{2}$
2. a) $2 \cdot \mathrm{x}^{2}-3=4 \Leftrightarrow 2 \cdot \mathrm{x}^{2}=7 \Leftrightarrow \mathrm{x}^{2}=\frac{7 \cdot 2}{2 \cdot 2} \Leftrightarrow \mathrm{x}_{1 / 2}= \pm \frac{\sqrt{14}}{2}$
b) $\sqrt{2} \cdot \mathrm{x}^{2}+\sqrt{3}=\sqrt{5} \Leftrightarrow \mathrm{x}^{2}=\frac{\sqrt{5}-\sqrt{3}}{\sqrt{2}} \Leftrightarrow$

$$
x_{1 / 2}= \pm \sqrt{\frac{(\sqrt{5}-\sqrt{3}) \cdot \sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}}= \pm \sqrt{\frac{\sqrt{10}-\sqrt{6}}{2}}= \pm \frac{1}{2} \cdot \sqrt{2 \cdot \sqrt{10}-2 \cdot \sqrt{6}}
$$

c) $18-0,5 \cdot x^{2}=11 \Leftrightarrow 7=0,5 \cdot x^{2} \Leftrightarrow x^{2}=14 \quad \Leftrightarrow \quad x_{1 / 2}= \pm \sqrt{14}$
d) $\quad 5-(4-\sqrt{3}) \cdot \mathrm{x}^{2}=2 \Leftrightarrow 3=(4-\sqrt{3}) \cdot \mathrm{x}^{2} \Leftrightarrow \mathrm{x}^{2}=\frac{3}{4-\sqrt{3}} \Leftrightarrow$

$$
\begin{aligned}
& \mathrm{x}^{2}=\frac{3 \cdot(4+\sqrt{3})}{(4-\sqrt{3}) \cdot(4+\sqrt{3})} \Leftrightarrow \mathrm{x}_{1 / 2}= \pm \sqrt{\frac{12+3 \sqrt{3}}{16-3}}= \pm \sqrt{\frac{13 \cdot(12+3 \sqrt{3})}{13 \cdot 13}} \\
& \mathrm{x}_{1 / 2}= \pm \frac{1}{13} \cdot \sqrt{156+39 \sqrt{3}}
\end{aligned}
$$

e) $\frac{\mathrm{x}^{2}-1}{\sqrt{20}}=\sqrt{0,45} \Leftrightarrow \mathrm{x}^{2}-1=\sqrt{0,45 \cdot 20} \Leftrightarrow \mathrm{x}^{2}=1+\sqrt{9} \Leftrightarrow \mathrm{x}^{2}=4 \Leftrightarrow \mathrm{x}_{1 / 2}= \pm 2$
f) $\quad \frac{\mathrm{x}^{2}-\sqrt{2}}{\sqrt{8}}=\frac{\sqrt{150}}{6} \Leftrightarrow \mathrm{x}^{2}-\sqrt{2}=\frac{\sqrt{8} \cdot \sqrt{150}}{6} \Leftrightarrow \mathrm{x}^{2}=\sqrt{2}+\frac{\sqrt{400 \cdot 3}}{6} \Leftrightarrow$

$$
\begin{aligned}
& x^{2}=\sqrt{2}+\frac{20 \cdot \sqrt{3}}{6} \Leftrightarrow x_{1 / 2}= \pm \sqrt{\sqrt{2}+\frac{10 \cdot \sqrt{3}}{3}}= \pm \sqrt{\frac{3 \cdot \sqrt{2}+10 \cdot \sqrt{3}}{3}} \\
& x_{1 / 2}= \pm \sqrt{\frac{3 \cdot(3 \cdot \sqrt{2}+10 \cdot \sqrt{3})}{3 \cdot 3}}= \pm \frac{1}{3} \cdot \sqrt{9 \cdot \sqrt{2}+30 \cdot \sqrt{3}}
\end{aligned}
$$

