Physik * Jahrgangsstufe 11 * Differentialrechnung in der Physik

Für die Geschwindigkeit v eines Körpers gilt: $v(t_o) \approx \frac{\Delta x}{\Delta t} = \frac{x_1 - x_o}{t_o - t}$

Mit mathematischer Grenzwertbildung folgt: $v(t_o) = \lim_{t_1 \to t_o} \frac{x_1 - x_o}{t_1 - t_o} = \frac{dx}{dt}(t_o) = x(t_o)$

 $\dot{x}(t_{o})$ gibt dabei die Ableitung der Orts-Funktion x = x(t) nach der Zeit t an.

Entsprechend gilt für die Beschleunigung a dieses Körpers:

$$a(t_o) \approx \frac{\Delta v}{\Delta t} = \frac{v_1 - v_o}{t_1 - t_o} \quad \text{und damit} \quad a(t_o) = \lim_{t_1 \to t_o} \frac{v_1 - v_o}{t_1 - t_o} = \frac{dv}{dt}(t_o) = v(t_o) = v(t_o)$$

 $x(t_a)$ gibt dabei die zweite Ableitung der Orts-Funktion x = x(t) an.

Mit dem zweiten Newtonschen Gesetz gilt also: $F(t) = m \cdot a(t) = m \cdot v(t) = m \cdot x(t)$

Bei krummlinigen Bewegungen überlagern sich die Bewegungen in x- bzw. y-Richtung ohne sich wechselseitig zu stören.

Oft gibt man x = x(t) und y = y(t) nicht getrennt sondern mit dem so genannten

Ortsvektor
$$\vec{r} = \vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix}$$
 gemeinsam an.

Der Ortsvektor zeigt zu jedem Zeitpunkt zu dem Ort (x/y), an dem sich der Körper befindet.

Der zugehörige Geschwindigkeits- bzw. Beschleunigungsvektor lautet dann:

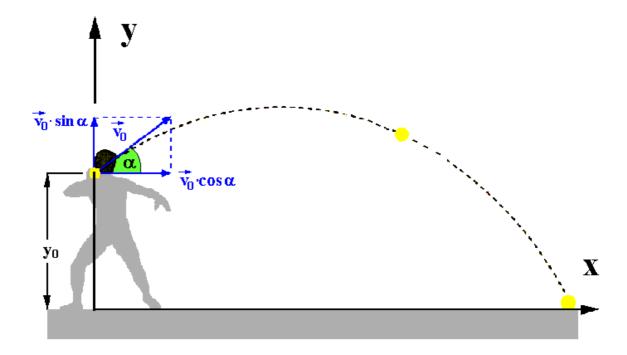
$$\vec{v}(t) = \vec{r}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{x}(t) \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} v_x(t) \\ v_y(t) \end{pmatrix} \quad \text{bzw.} \quad \vec{a}(t) = \vec{v}(t) = \vec{r}(t) = \begin{pmatrix} \dot{x}(t) \\ \dot{x}(t) \\ \vdots \\ \dot{y}(t) \end{pmatrix} = \begin{pmatrix} a_x(t) \\ a_y(t) \end{pmatrix}.$$

 $\vec{v}(t)$ und $\vec{a}(t)$ geben dann zu jedem Zeitpunkt Richtung und Betrag der Geschwindigkeit bzw. der Beschleunigung an.

Aufgaben:

1. a) Begründen Sie, dass für eine Bewegung (in x-Richtung) mit der konstanten Beschleunigung a (in x-Richtung) die Ortsfunktion x = x(t) folgendermaßen lautet:

$$x = x(t) = x_o + v_o \cdot t + \frac{1}{2} \cdot a \cdot t^2$$
. Welche Bedeutung haben dabei x_o und v_o ?


- b) Ein Ball der Masse 500g wird mit der Anfangsgeschwindigkeit 15 ms⁻¹ nach oben geworfen. Welche Höhe und Geschwindigkeit hat der Ball nach 1,0s? Welche maximale Höhe erreicht er und wann schlägt er wieder am Boden auf? (g = 10 ms⁻²)
- c) Ein Ball der Masse 500g wird mit der Anfangsgeschwindigkeit 15 ms⁻¹ waagrecht aus einer Höhe von 20m über dem Boden abgeworfen. Welche Höhe und Geschwindigkeit hat der Ball nach 1,0s ? Wo schlägt der Körper wann mit welcher Geschwindigkeit auf? Welche Bahnkurve beschreibt der Ball?

2. Welche Bewegung wird durch den folgenden Ortsvektor $\vec{r}(t)$ beschrieben?

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} v_{ox} \cdot t \\ h + v_{oy} \cdot t - \frac{1}{2} \cdot g \cdot t^2 \end{pmatrix}$$
 (Welche Bedeutung haben h, v_{ox} und v_{oy}?)

Berechnen Sie v(t) und a(t). Unter welchem Winkel zur Waagrechten und mit welcher Geschwindigkeit startet der Körper zum Zeitpunkt t = 0?

3. Das Bild zeigt einen Kugelstoßer, der die Kugel mit der Anfangsgeschwindigkeit v_o unter dem Winkel α (relativ zur Waagrechten) aus der Ausgangshöhe y_o wegstößt.

Erstellen Sie den zugehörigen Ortsvektor $\vec{r}(t)$, den Geschwindigkeitsvektor $\vec{v}(t)$ und den Beschleunigungsvektor $\vec{a}(t)$.

Wie kann man mit Hilfe dieser Vektoren

- a) die "Wurfweite"
- b) die größte Höhe der Kugel
- c) die Auftreffgeschwindigkeit der Kugel am Boden ermitteln?
- 4. Die Auslenkung y eines Federpendels, das mit der Amplitude A = 5,0cm und der Schwingungsdauer T = 3,0s schwingt, lautet

$$y(t) = 5,0cm \cdot \sin\left(\frac{2\pi}{3.0s} \cdot t\right).$$

- a) Bestimmen Sie die maximale Geschwindigkeit nach "oben". Wann tritt diese Geschwindigkeit jeweils auf?
- b) Bestimmen Sie zum Zeitpunkt t_1 = 2,6s die Auslenkung y (t_1), die Geschwindigkeit v (t_1) und die Beschleunigung a (t_1).
- c) Welche maximale Beschleunigung erfährt der Pendelkörper? Bei welcher Auslenkung tritt diese maximale Beschleunigung auf?